Steady state analysis of the genetic regulatory network incorporating underlying molecular mechanisms for anaerobic metabolism in Escherichia coli.

نویسندگان

  • Sumana Srinivasan
  • Kareenhalli Viswanath Venkatesh
چکیده

A Gene Regulatory Network (GRN) represents complex connections between genes in a cell which interact with each other through their RNA and protein expression products, thereby determining the expression levels of mRNA and proteins required for functioning of the cell. Microarray experiments yield the log fold change in mRNA abundance and quantify the expression levels for a GRN at the genome level. While Boolean or Bayesian modeling along with expression and location data are useful in analyzing microarray data, they lack underlying mechanistic details present in GRNs. Our objective is to understand the role of molecular mechanisms in quantifying a GRN. To that effect, we analyze under steady state, the complete GRN for the central metabolic pathway during anaerobiosis in Escherichia coli. We simulate the microarray experiments using a steady state gene expression simulator (SSGES) that models molecular mechanistic details such as dimerization, multiple-site binding, auto-regulation and feedback. Given a GRN, the SSGES provided the log fold change in mRNA expression values as the output, which can be compared to data from microarray experiments. We predict the log fold changes for mutants obtained by knocking out crucial transcriptional regulators such as FNR (F), ArcA (A), IHFA-B (I) and DpiA (D) and observe a high degree of correlation with previously reported experimental data. We also predict the microarray expression values for hitherto unknown combinations of deletion mutants. We hierarchically cluster the predicted log fold change values for these mutants and postulate that E. coli has evolved from a predominantly lactate secreting (FAID mutant) into a mixed acid secreting phenotype as seen in the wild type (WT) during anaerobiosis. Upon simulating a model without incorporating the mechanistic details, not only the correlation with the experimental data reduced considerably, but also the clustering of expression data indicated WT to be closer to the quadruple mutant FAID. This clearly demonstrates the significance of incorporating mechanistic data while quantifying the expression profile of a GRN which can help in predicting the effect of a gene mutant and understanding the evolution of transcriptional control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach

Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...

متن کامل

Identification of miR-24 and miR-137 as novel candidate multiple sclerosis miRNA biomarkers using multi-staged data analysis protocol

Many studies have investigated misregulation of miRNAs relevant to multiple sclerosis (MS) pathogenesis. Abnormal miRNAs can be used both as candidate biomarker for MS diagnosis and understanding the disease miRNA-mRNA regulatory network. In this comprehensive study, misregulated miRNAs related to MS were collected from existing literature, databases and via in silico prediction. A multi-staged...

متن کامل

Modeling gene regulatory networks: Classical models, optimal perturbation for identification of network

Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption.  On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications.  This is not an unrealistic goal since genes which are regulated by gene regulatory ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular bioSystems

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 2014